MAU23101
 Introduction to number theory 0 - Diophantine equations

Nicolas Mascot mascotn@tcd.ie
Module web page

Michaelmas 2020-2021
Version: September 24, 2020

Trinity College Dublin
Coláiste na Tríonóide, Baile Âtha Cliath
The University of Dublin

A Diophantine equation

Consider the equation

$$
x^{3}+y^{3}+z^{3}=29
$$

Does it have solutions? How many?

A Diophantine equation

Consider the equation

$$
x^{3}+y^{3}+z^{3}=29
$$

Does it have solutions? How many?
If we impose no restrictions on x, y, z, then the answer is easy: take any x and y, e.g. $x=1, y=2$, and then

$$
z=\sqrt[3]{29-x^{3}-y^{3}}=\sqrt[3]{20}
$$

A Diophantine equation

Consider the equation

$$
x^{3}+y^{3}+z^{3}=29
$$

Does it have solutions? How many?
If we impose no restrictions on x, y, z, then the answer is easy: take any x and y, e.g. $x=1, y=2$, and then

$$
z=\sqrt[3]{29-x^{3}-y^{3}}=\sqrt[3]{20}
$$

But if we impose $x, y, z \in \mathbb{Z}$, this becomes a Diophantine equation, which is much more difficult.

A Diophantine equation

Consider the equation

$$
x^{3}+y^{3}+z^{3}=29
$$

Does it have solutions? How many?
If we impose no restrictions on x, y, z, then the answer is easy: take any x and y, e.g. $x=1, y=2$, and then

$$
z=\sqrt[3]{29-x^{3}-y^{3}}=\sqrt[3]{20}
$$

But if we impose $x, y, z \in \mathbb{Z}$, this becomes a Diophantine equation, which is much more difficult.

Some solutions:

$$
x=1, y=1, z=3
$$

A Diophantine equation

Consider the equation

$$
x^{3}+y^{3}+z^{3}=29
$$

Does it have solutions? How many?
If we impose no restrictions on x, y, z, then the answer is easy: take any x and y, e.g. $x=1, y=2$, and then

$$
z=\sqrt[3]{29-x^{3}-y^{3}}=\sqrt[3]{20}
$$

But if we impose $x, y, z \in \mathbb{Z}$, this becomes a Diophantine equation, which is much more difficult.

Some solutions:

$$
\begin{gathered}
x=1, y=1, z=3 \\
x=4, y=-3, z=-2
\end{gathered}
$$

Almost the same Diophantine equation

Consider now

$$
x^{3}+y^{3}+z^{3}=30
$$

Does it have solutions?

Almost the same Diophantine equation

Consider now

$$
x^{3}+y^{3}+z^{3}=30
$$

Does it have solutions?

$$
x=2220422932, y=-2218888517, z=-283059965
$$

This is the simplest solution!

That Diophantine equation again

Consider now

$$
x^{3}+y^{3}+z^{3}=31
$$

Does it have solutions?

That Diophantine equation again

Consider now

$$
x^{3}+y^{3}+z^{3}=31
$$

Does it have solutions?
No, and that's very easy to prove!

That Diophantine equation again

Consider now

$$
x^{3}+y^{3}+z^{3}=31
$$

Does it have solutions?
No, and that's very easy to prove!

Same thing for

$$
x^{3}+y^{3}+z^{3}=32
$$

That Diophantine equation one more time

Consider now

$$
x^{3}+y^{3}+z^{3}=33
$$

Does it have solutions?

That Diophantine equation one more time

Consider now

$$
x^{3}+y^{3}+z^{3}=33
$$

Does it have solutions?
No one knows!

That Diophantine equation one more time

Consider now

$$
x^{3}+y^{3}+z^{3}=33
$$

Does it have solutions?
No-one knows!
Until 2019, no one knew!

